
LightOcean: A Lightweight And Efficient
Network For Real-time UAV Tracking

Haiyang Chen∗†, Weiqiang Wang∗†, Xingzhou Zhang‡§, �Wei Zhou∗†, Weisong Shi¶
∗Engineering Research Center of Cyberspace, Yunnan University, Kunming 650091, China

†School of Software, Yunnan University, Kunming 650091, China
‡Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

§University of Chinese Academy of Sciences, Beijing 100190, China
¶Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA

Abstract—Siamese-based trackers have significantly ad-
vanced in visual object tracking over the past years. However,
most of these trackers emphasize tracking accuracy over
efficiency, which limits their real-world deployment on edge
platforms with widespread applications such as unmanned
aerial vehicles (UAVs). In this paper, we propose LightOcean,
a lightweight and efficient aerial tracker. Specifically, we design
a dynamic template feature update module and a pixel-level
cross-correlation module to improve the robustness and adapt-
ability of the tracker without additional model computation.
The former allows the tracker to capture additional space-
time information during the tracking process to adapt to the
appearance changes of the object. The latter utilizes pixel-
level cross-correlation and attention mechanisms to generate
similarity maps, improving the accuracy of predicted bound-
aries. By combining the lightweight and efficient backbone
network and the prediction head, LightOcean significantly
increases the tracking speed while maintaining accuracy. By
running three common UAV benchmarks on Jetson Nano, a
typical edge-embedded device, LightOcean presents better
performance. The tracking speed is 4x faster than the state-
of-the-art tracker, Ocean, while the energy consumption and
memory usage are reduced by 80% and 12%. What’s more, the
accuracy remained stable, and the precision of LightOcean
is 78.6%, which is 2.7% higher than Ocean.

Index Terms—Edge computing, UAVs, Object tracking,
Lightweight network

I. INTRODUCTION

With the advantages of small size, high flexibility, and
strong safety, Unmanned Aerial Vehicles(UAVs) have been
widely used in commercial, agricultural, transportation, and
other cloud-edge collaboration fields. Benefiting from the
fast development in edge computing and computer vision,
more and more real-time computer vision tasks are being
deployed in edge devices like UAVs. As the fundamental
tasks of computer vision, object tracking have a wide range
of application prospects in the UAV scene, such as wildlife
rescue [35], vehicle tracking[27], cinematography[29], etc.

In the tracking tasks, the UAVs will continuously locate
and follow the designated target, which requires a real-time
and accurate tracking algorithm. However, there are some
challenges in achieving accurate and real-time UAV tracking
due to the complexity of aerial scenarios. Firstly, the UAV

0 2 4 6 8 10 12 14
Tracking Speed (FPS)

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Pr
ec

is
io

n

SiamCAR SiamMask

DaSiamRPN

Ocean

SiamBan

SiamRPN++

SiamFC++

HiFT
Ours

Real-time line

The Performance vs. Speed on UAV123@10FPS

Fig. 1: A comparison of state-of-the-art trackers and the
proposed LightOcean. The size of the circle represents

the combined weight of tracking speed(X-axis) and
precision(Y-axis). The larger the circle, the better the

performance.

tracking tasks are dynamic. They are more susceptible to il-
lumination changes, rapid movement, scale and size changes,
complex background information, and other factors, which
puts forward higher requirements for the robustness and
adaptability of the tracking algorithm. Secondly, due to the
limitation of energy consumption, the computing resources
that UAVs can allocate to the tracking are limited, which
is difficult to meet the requirements of trackers with high
computational complexity.

In the field of visual object tracking, trackers are mainly
divided into two types: correlation filter-based trackers, and
deep learning-based trackers. Among them, the tracker based
on traditional correlation filtering runs at high speed on the
CPU due to its high efficiency in the Fourier domain. Still,
these trackers cannot play an influential role when faced with
the everyday challenges of UAV tracking, such as occlusion
and disappearance. While another type of trackers, siamese-
based trackers, has achieved state-of-the-art results on most
UAV benchmarks. However, the success of siamese-based
trackers relies on complex network structures and online

update mechanisms. Achieving superior performance comes
at the expense of substantial computational and resource
consumption, which limits their application in real UAV
tracking. All in all, existing trackers do not achieve a
satisfactory balance between tracking efficiency and perfor-
mance.

In this paper, we propose a lightweight tracking frame-
work, LightOcean tracker, which effectively achieves the
above balance. Specifically, we first analyze the latency and
resource consumption of different backbone networks on
edge devices and apply ShuffleNetV2 with the best edge
performance to the tracker as a feature extraction network.
Subsequently, we noticed that although the lightweight back-
bone network can effectively improve the tracking efficiency,
it is not enough to extract robust discriminative features due
to the reduction of the network depth and the number of
parameters. To improve tracking performance, we introduce
a dynamic template update network, which allows the tracker
to dynamically adapt to the appearance changes of the target
without increasing the model computation. This network
decides whether to update the dynamic template features
according to the confidence score and uses cross attention
to improve the critical information in the dynamic template
features. In addition, we design a pixel-level feature fusion
network, which reduces the interference of background in-
formation in the search image, improves the flexibility and
efficiency of the tracker. Finally, we optimize the predic-
tion network of the model by using lightweight convolu-
tions, which further reduce the model’s computational load
and inference latency while slightly affecting the tracking
performance. Figure 1 powerfully demonstrates the speed
advantage of LightOcean while maintaining comparable
accuracy and robustness to the deeper tracker.

The contributions of this paper are as follows.

• We design a lightweight tracking framework,
LightOcean, which is specially used for UAV
tracking tasks with complex scenes and limited
resources. Combined with a lightweight backbone
network and prediction heads, LightOcean is able
to run on edge platforms with low latency and resource
consumption.

• We introduce a dynamic template update module and
a pixel-level feature fusion module and apply them to
the tracker, which improves the model’s robustness and
adaptability without increasing the model’s computa-
tional cost.

• We evaluate the performance of LightOcean on
three UAV benchmarks, UAV123@10FPS, UAV20L,
and DTB70. Running on typical edge embedded de-
vices, the tracking speed is 4x faster than the state-of-
the-art tracker, Ocean, while the energy consumption
and memory usage are reduced by 80% and 12%.

II. RELATED WORK

A. Object Tracking

Correlation filter based object tracking. The method
based on correlation filtering is common and traditional
in target tracking, which has a tremendous advantage in
tracking speed. MOSSE [2] and KCF [15] were the first
to promote the development of correlation filtering in the
field of target tracking. After that, some trackers [9, 10, 31]
improve tracking performance from color features, multi-
scale features, multi-channel features, and depth features.
However, these artificially designed features are challenging
to cope with illumination changes, rapid movement, and
scale and size changes in UAV tracking, which make the
correlation filtering algorithm with poor robustness and
adaptability unsuitable for UAV tracking.

Deep learning based object tracking. Recently, deep
tracking tracker, especially the siamese-based tracker have
gained significant popularity in the visual tracking field due
to their excellent robustness and adaptability. The pioneering
work of Siamese trackers, SiamFC [1], first introduced the
feature cross-correlation operation into the Siamese archi-
tecture without updating the template image while ensuring
a sure accuracy at high speed. By referring to the target
detection task, SiamRPN [22] introduces region proposal
networks into the tracking task. SiamRPN++ [23] improves
on SiamRPN by using a spatial aware sampling strategy
to remove the impact of padding operation and proposes
a model architecture to perform depth-wise and layer-wise
aggregations. Ocean [38], SiamFC++ [36] replace the anchor
base with an anchor-free mechanism to solve the limitation
of the anchor-based RPN method that requires a lot of prior
knowledge and is computationally complex. In addition,
ATOM [8] and DIMP [7] achieved excellent performance
by combining discriminative online classifier and siamese
structure. Although these methods have achieved excellent
performance on high-performance GPUs, yet they bring ad-
ditional computation and energy consumption, which makes
them difficult to deploy at the edge and operate on embedded
platforms such as UAVs.

B. Lightweight And Efficient Neural Network

With the increasingly complex structure of deep neural
network models and higher and higher computational load,
the demand for hardware resources is gradually increasing,
which greatly limits its application in real scenarios, such as
edge embedded applications. One way to solve this problem
is to manually design a lightweight and efficient network.
For example, SqueezeNet [19] is the first work to focus
on model size, which reduces the number of parameters of
the model by reducing the size of the convolution kernel
and group convolution. MobileNetV1 [16] uses a depthwise
separable operation instead of standard convolution to reduce
parameters of network, and convolves different convolution
kernels on each input channel. As an improved network of
MobileNetV1, MobileNetV2 [32] proposes inverted residual

Feature Extraction

Network(Stride = 16)
 Prediction Head

UAV

Feature Fusion NetworkSearch

Dynamic

Template

Template

Pixel-wise

Correlation

Module
MLP

Conv

Update

16

16

16

16

Crop

16
16

192

192

16

16

8
8

192

8
8

192 Conv

Channel

Attention

Module

Cross

Attention

Module

8
8

192

Template update network

Fig. 2: The architecture of LightOcean, which consists of four parts: feature extraction network, template update
network, feature fusion network, and classification regression prediction network

layers by introducing the residual idea in ResNet. More
recent work, ShuffleNetV2 [28] proposes four practical
guidelines for efficient network design, arguing that FLOPS
cannot fully measure the complexity of the model, and the
factors that affect the operation speed of the model also
include GPU, memory usage, etc. In this work, we follow
lightweight and efficient principles to design the network
structure, such as using an efficient backbone network and
replacing standard convolutions with less computationally
intensive convolutions as much as possible.

III. LIGHTOCEAN : A LIGHTWEIGHT AND EFFICIENT
UAV TRACKER

This section will provide a detailed description of the
proposed LightOcean framework. As shown in Figure 2,
LightOcean can be divided into four networks: a feature
extraction network, a template update network, a feature fu-
sion network, and a prediction head network. LightOcean
accepts three images as input: a static template image Iz
cropped from the first frame, a dynamic template image
Id continuously updated during the tracking process, and
a search image Ix. The three input images are first passed
through a parameter-sharing backbone network to generate
corresponding features. Then the static and dynamic tem-
plate features will be fed into a cross-attention module to
enhance the target features in the dynamic template features
directionally. The enhanced dynamic and static template
features will be fused through a learnable parameter to
generate more representative template features. Then, in
the feature fusion network, the similarity map between the
search feature and the template feature will be obtained
through pixel-level inter-operation and go through a channel
attention template to guide the tracker to pay more attention
to the foreground information. The prediction head network
consists of three branches: the classification and regression
branches are used to classify and locate the target to obtain
the tracking result, and the confidence branch is used to

judge whether the tracking result of the current frame is sta-
ble. After every fixed frame, the tracker will decide whether
to update the dynamic template based on the confidence
score.

A. Feature extraction network

The feature extraction network has a critical impact on
the performance and efficiency of the model. To choose
a suitable backbone network, we first compare the perfor-
mance of different backbone networks on edge devices and
apply the best-performing ShuffleNetV2 to our tracker. More
specifically, the original ShuffleNetV2 as a classification
network has a downsampling step size of 32, which is not
conducive to the precise positioning of the target. Therefore,
we removed the last stage of the original ShuffleNetV2,
kept only the first four stages for feature extraction, and
modified the downsampling step size of the fourth stage to
a unit step size to ensure the size of the output feature map.
Furthermore, we add dilated convolutions in the fourth stage
to increase the receptive field of the model.

The output of the backbone network is a feature map
with a downsampling step size of 16 relatives to the input
image, and its number of channels is 192. To facilitate the
calculation of the subsequent feature fusion module and
improve the efficiency, we pass the feature map through
a superficial adjustment layer consisting of a layer of 1*1
convolution and a layer of normalization to obtain the final
output result.

B. Template update network

The template features are cropped from the initial frame in
the Siamese-based tracker. However, when the target changes
significantly over time, the semantic information of the
initial state will not be able to match the current object state
accurately. This situation is prevalent with rapidly changing
UAV tracking tables and is a significant cause of tracking
mission failures or object drift. Therefore, we introduce
an additional dynamic template feature, which dynamically

adapts to the object’s appearance changes without increasing
the model’s computational complexity.

For the dynamic template feature Fd, we expect the
tracker to focus on the object region instead of embedding all
pixel features into the tracker equally, which suppresses the
interference of background information. Inspired by [34],
We design a cross-attention module to enhance the target
information in dynamic template features by establishing
the interrelationship between dynamic template and static
template features. we first compute the similarity between
each pixel of the static template feature Fd and the dynamic
template feature Fd to generate a similarity matrix w, and
then normalize w through a softmax layer, which can be
expressed as:

wij =
exp

(
f(F i

s , F
j
d)
)

∑
k∈Fs

exp
(
f(F k

s , F
j
d)
) (1)

where wij represents the measure of the tracker’s attention
to the Sj

d pixel node in Sd according to the viewpoint
of the Si

t pixel node in St. Intuitively, the more similar
the representations between two pixel nodes, the greater
the correlation between them, and the more likely they are
foreground. Therefore, we perform a matrix multiplication
operation to update the dynamic template features, so that
the tracker can adaptively focus on the foreground regions
in Fd according to the suggestions of the template features.
Finally, we perform a matrix concat operation on the fusion
features and the search features to obtain a more powerful
feature representation, and then use a 1×1 Conv-BN-ReLU
block to reduce its dimension to reduce the complexity of
the model, it can be denoted as:

F
′

d = concat(Fd, Fdw) (2)

The initial static template feature provides a stable object
model and accurate bounding box, which can always be used
as the main reference information. Therefore, we linearly
integrate the feature-enhanced dynamic template with the
static template, so that the tracker can obtain stable spatial
information from the static template features and also obtain
temporal information from the dynamic template features:

Fz = λFs + (1− λ)F
′

d (3)

C. Feature fusion network

In the deep tracker of the siamese structure, the role
of the cross-correlation operation is to fuse the template
features and search features together in a specific way.
Among them, up-channel correlation [1, 22] and depth-wise
correlation [23, 38] are commonly used cross-correlation
methods in the Siamese-base tracker. Both methods use the
entire template feature as the convolution kernel and make
the sliding window to calculate the similarity of the search
feature. However, this simple global matching method is
easily interfered with by background, affecting the tracker’s

robustness in complex and variable UAV scenarios. Recently,
Alpha-Refine [37] proposed a new pixel-level correlation
operation, which utilizes spatial pixels to calculate the
similarity between template and search features to gener-
ate more delicate correlation features, which alleviates the
interference of background noise. We follow this idea and
enhance the critical channel feature representation with a
channel attention mechanism.

search feature

Element-wise sum

Channel-wise multiplication

Conv & RELU & Conv

template feature

similarity map

GMP

GAP

Sigmoid

Reshape

Reshape

zh
zw

C

xw

xh

C

C

C

zz wh

xx wh

xx wh

zz wh

Fig. 3: Pixel-wise Correlation with Channel Attention
Module

Pixel-wise Correlation Module. As illustrated in Fig-
ure 3, given the search features Fx, we first reshape it into
a set of convolution kernels of size 1∗1 and length C along
the spatial dimension, where the C represents the number of
channels of the feature. This set Sx is represented as:

Sx = {S1
x, S

2
x, S

3
x, · · · , Sp

x} (4)

Each item of the set represents the pixel point informa-
tion of the search feature, there are p = hx ∗ wx items,
and hx and wx are the template height and width of the
search features Fx. Similarly, the same process is applied
to template feature Fz to generate pixel information sets
Sz = {S1

z , S
2
z , S

3
z , · · · , Sq

z} . Here q is the size of the
template feature.

To obtain pixel-level fused features, we generate the
similarity response r between each pixel in the set St and
set Ss by the vector dot-product function f . Taking Si

t ∈ St

and Sj
s ∈ Ss as an example, the score rij is proportional

to the similarity between the two pixels, which is expressed
as:

rij = f(Si
t , S

j
s) (5)

Channel Attention Module. The similarity map obtained
by pixel-level cross-correlation can accurately represent the
similarity between each pixel of the template feature and the
search feature and preserve the target’s boundary information
and scale information to the greatest extent. However, this
method of local matching inevitably leads to the degrada-
tion of global communication, and it will be difficult for
the tracker to distinguish the foreground and background
regions. Therefore, inspired by the attention mechanism, we
design a channel attention module to enhance target infor-
mation and suppress background information with similar

features. Specifically, given a similarity map Rs, we first
aggregate the spatial information in Rs using global max
pooling(GMP) and global average pooling(GAP) sums. The
generated max-pooled and average-pooled features are then
fed into a parameter-sharing FPN network to explore the
interrelationships between channels better. The similarity
feature map Rc after channel attention enhancement can be
obtained by the following formula:

Rc = σ(FFN(GAP (Rs))+FFN(GMP (Rs)))∗Rs (6)

Here σ represents the Sigmoid function and ∗ denotes the
channel-wise multiplication.

D. Prediction head network

Compared with anchor-based methods, anchor-free based
methods have lower parameters and performance. Therefore,
We design a lightweight prediction head containing three
sub-networks to accomplish the task: a classification head,
a regression head, and a confidence score head. The classi-
fication header is responsible for distinguishing foreground
and background regions in the response maps and consists
of two lightweight Conv-BN-ReLU [6] blocks and a 1 ∗ 1
linear standard Conv. The regression head is used to predict
the distance from each pixel within the target object to the
ground-truth bounding box and consists of four lightweight
Conv-BN-ReLU [6] blocks and a 1 ∗ 1 linear standard
Conv. To reduce the latency of converting the response
maps from GPU to CPU, we adjusted the size of the
response maps for classification and regression head from
25 to 16. Furthermore, during tracking, not all cases need
to update the dynamic template frame. When the target
has been completely occluded or out of view, the cropped
template is no longer reliable. For simplicity, we consider
the current tracking state to be credible as long as the search
image contains the target. Therefore, we add a confidence
score header to judge whether the current tracking state is
reliable, consisting of a three-layer perceptron and a sigmoid
activation.

IV. EXPERIMENTS

In this section, we first introduce the training and testing
details of the model and the setting of hyperparameters.
Then, we evaluate the tracker accuracy on three public
UAV tracking benchmarks, including UAV123@10FPS[30],
UAV20L[30], DTB70 [24], and compare with other state-of-
the-art UAV trackers to demonstrate the superiority of our
proposed method. At the same time, edge-embedded devices
are tested to verify their practicability in real scenarios.
Finally, comprehensive ablation experiments analyze the
impact of individual parts on the tracker.

A. Implementation details

Our proposed model is implemented using Python and
PyTorch. The whole experiment is performed on a server
with 4 NVIDIA A100-PCIe-40GB. To obtain the best ex-
perimental results, we selected three edge-friendly backbone

networks, AlexNet, ShuffleNetV2, and MobileNetV2, for
training. All backbone networks have a downsampling stride
and are pretrained on imageNet.

Training. The proposed tracker is trained on COCO [26],
LaSOT [12], GOT-10K [17], VisDrone [39] datasets, each
minimum training unit consists of two template images and a
search image. The size of the search and template images are
255*255 and 127*127, respectively. We use SGD [21] for
synchronization optimization on four devices with a batch
size of 256. For more training details, the learning rate
decays exponentially from 1 × 10−3 to 5 × 10−3. Weight
decay and momentum are set to 10−4 and 0.9, respectively.
The training process is divided into two stages to decouple
the localization and classification tasks.

In stage 1, we train other parameters except for the
confidence score header. Static template frames and dynamic
template frames are randomly extracted from the same video
sequence, and the interval between them is less than 200.
The search frame is randomly selected from the range of less
than 100 frames near the dynamic template frame to train
the localization ability of the model. Stage 1 trains a total
of 50 epochs, and each epoch has 6 ∗ 106 training units. We
use the IoU loss and the binary cross-entropy loss to jointly
train the regression and classification networks, and the total
loss is defined as:

Ls1 = Lcls + Lreg (7)

In stage 2, we freeze other parameters except the confidence
score header to avoid affecting the localization ability of
the model. In this stage, 20 epochs are trained, each with
6 ∗ 104 training units. The extraction process for positive
sample search images is the same as in stage 1. For negative
sample search images, we sample from the same video as
much as possible; otherwise, we randomly sample a frame
from other video sequences as a negative sample. The binary
cross-entropy loss is defined as:

Ls2 = yi log Pi + (1− yi) log (1− Pi) (8)

Here yi is the ground truth label, and Pi is the predicted
confidence.

Testing. During inference, we follow a similar tracking
process to Ocean[38]. Static and dynamic template features
are initialized in the first frame, and then a cropped search
image is fed into the network. Generate corresponding
bounding boxes and confidence scores from the classification
and regression response maps. When the update interval
t = 150 is reached, if the confidence score is higher than
the threshold p = 0.5, the dynamic template feature is
updated; otherwise, the confidence score will be checked
every gradually increasing interval until the confidence score
is higher than the threshold p = 0.5. The updated dynamic
template features are cropped from the search images and
fed into the backbone network.

0 5 10 15 20 25 30 35 40 45

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots on UAV123@10FPS

[0.786] Ours
[0.771] SiamRPN++(M2)
[0.760] SiamAPN
[0.749] HiFT
[0.743] SiamFC++
[0.737] SiamRPN++(Alex)
[0.692] DASiamRPN
[0.671] AutoTrack
[0.640] ECO
[0.627] STRCF
[0.612] ARCF
[0.596] MCCT
[0.575] SRDCF
[0.406] KCF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

ra
te

Success plots on UAV123@10FPS

[0.578] SiamRPN++(M2)
[0.575] Ours
[0.575] SiamFC++
[0.571] SiamAPN
[0.569] HiFT
[0.551] SiamRPN++(Alex)
[0.483] DASiamRPN
[0.477] AutoTrack
[0.468] ECO
[0.457] STRCF
[0.435] ARCF
[0.433] MCCT
[0.423] SRDCF
[0.265] KCF

0 5 10 15 20 25 30 35 40 45

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots on UAV20L

[0.764] Ours
[0.763] HiFT
[0.723] SiamRPN++(M2)
[0.701] SiamRPN++(Alex)
[0.692] SiamAPN
[0.665] SiamFC++
[0.631] DASiamRPN
[0.575] STRCF
[0.568] MCCT
[0.544] ARCF
[0.512] AutoTrack
[0.507] SRDCF
[0.498] ECO
[0.311] KCF

0 5 10 15 20 25 30 35 40 45

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots on UAV20L

[0.764] Ours
[0.763] HiFT
[0.723] SiamRPN++(M2)
[0.701] SiamRPN++(Alex)
[0.692] SiamAPN
[0.665] SiamFC++
[0.631] DASiamRPN
[0.575] STRCF
[0.568] MCCT
[0.544] ARCF
[0.512] AutoTrack
[0.507] SRDCF
[0.498] ECO
[0.311] KCF

Fig. 3: Overall performance of all trackers on (a) UAV123@10fps, (b)UAV20L. The overall results illustrate that
LightOcean(ours) achieves superior performance against other SOTA trackers.

TABLE II: Comparison results on the DTB70 benchmark. The top three performers are highlighted in red, green and blue
respectively. Prec. and Succ. respectively denote precision score at 20 pixels and AUC of success plot.

Tracker SiamRPN++
(AlexNet)

SiamRPN++
(MobileNetV2)

SiamAPN
(AlexNet)

SiamFC++
(AlexNet)

HiFT
(AlexNet) AutoTrack ECO STRCF ARCF MCCT SRDCF KCF LightOcean

(ours)
Prec. 0.793 0.785 0.784 0.785 0.802 0.716 0.635 0.649 0.694 0.604 0.512 0.468 0.795
Succ. 0.586 0.593 0.586 0.584 0.594 0.478 0.448 0.437 0.472 0.405 0.363 0.280 0.594

For more details on the prediction head regression and
classification branches and training objectives, we refer the
reader to [39]

E. Dynamic Template Updates

IV. EXPERIMENTS

In this section, we first introduce the training details of the
model and the setting of hyperparameters. Then, we propose
a novel evaluation metric set, LEMA, to comprehensively
evaluate the performance of the tracker on real UAV tracking
tasks. On the one hand, we compare the inference latency and
resource consumption of our tracker with other state-of-the-art
deep trackers on common edge devices. On the other hand, we
evaluate our tracker accuracy on three public UAV tracking
benchmarks, including UAV123[29], UAV123@10FPS[29],
VisDrone2019-SOT [40], and compare with other state-of-the-
art UAV trackers. Finally, comprehensive ablation experiments
analyze the impact of individual parts on the tracker.

A. Implementation details

Our proposed model is implemented using Python and
PyTorch. In order to obtain the best experimental results,
we selected three edge-friendly backbone networks, AlexNet,
ShuffleNetV2 and MobileNetV3 for training. All backbone
networks have a downsampling stride of 16 and are pretrained
on imageNet. For more training details, we first train the target
subnet with a warmup learning rate of 1×10−3 to 5×10−3, and
then use a learning rate of 5×10−3 to 10−5 for the rest of the
training. The weight decay and momentum are set to 10−4 and
0.9. We perform synchronous SGD on 4 NVIDIA A100-PCIe-
40GB with a total batchsize of 128 and a training duration of
6 days. The training process of the entire model is end-to-end.
The proposed model is trained for a total of 50 epochs, and
each epoch selects 4 ∗ 104 image pairs consisting of search
image and target image from COCO [25], LaSOT [11] and
GOT-10K [17]. The size of the search image is set to 255×255,

TABLE III: Attribute-based evaluation of the LightOcean
and other14 SOTA tracker on two benckmarks. The best two
performances are respectively highlighted by red and green
color. LightOcean keeps achieving the best performance in

different attributes.

Attributes Out of View Similar Object Scale Variation Full Occlusion
Tracker Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

SiamRPN++ A 0.642 0.474 0.730 0.523 0.703 0.522 0.521 0.313
SiamRPN++ M 0.720 0.527 0.731 0.539 0.742 0.553 0.574 0.363

SiamAPN 0.688 0.504 0.699 0.512 0.732 0.548 0.530 0.320
SiamFC++ 0.677 0.522 0.727 0.544 0.718 0.553 0.521 0.335

HiFT 0.685 0.514 0.673 0.490 0.725 0.549 0.525 0.323
AutoTrack 0.554 0.406 0.664 0.462 0.629 0.443 0.444 0.243

ECO 0.535 0.399 0.655 0.478 0.594 0.430 0.465 0.256
STRCF 0.523 0.389 0.630 0.455 0.580 0.419 0.426 0.232
ARCF 0.449 0.330 0.657 0.445 0.570 0.399 0.392 0.200
MCCT 0.493 .0365 0.627 0.451 0.547 0.396 0.421 0.236
SRDCF 0.492 0.389 0.585 0.421 0.531 0.390 0.418 0.229

KCF 0.309 0.222 0.453 0.278 0.374 0.238 0.281 0.135
LightOcean(Ours) 0.750 0.543 0.767 0.542 0.769 0.558 0.627 0.377

and the size of the template image is set to 127 × 127, both
of which are larger than the object area.

B. Comparison on UAV benchmarks

In this section, We compare our proposed tracker with ex-
isting 13 lightweight trackers on 3 common UAV benchmarks
(VisDrone2019-SOT [40], UAV123 [29], DTB70 [29]). There
are 6 Siamese-base trackers (SiamFC++ [36], SiamFC [1],
SiamRPN++ [23], HiFT [3]), and 5 DCF-base trackers
(ECO[10], KCF [14], ARCF [18], AutoTrack[24], BACF[20]).
To be fair, all Siamese-based trackers use lightweight back-
bone networks such as AlexNet and Mobilenet.

UAV123@10FPS UAV123@10fps [29] adopts a sampling
rate of 10FPS. Compared with UAV123, the interval between
frames becomes larger, which causes the scene to change faster
and is more challenging for tracking tasks.

UAV20L The UAV20L consists of 20 long-term tracking
sequences with an average of 2934 frames and a total of over

(a) UAV123@10FPS

0 5 10 15 20 25 30 35 40 45

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots on UAV123@10FPS

[0.786] Ours
[0.771] SiamRPN++(M2)
[0.760] SiamAPN
[0.749] HiFT
[0.743] SiamFC++
[0.737] SiamRPN++(Alex)
[0.692] DASiamRPN
[0.671] AutoTrack
[0.640] ECO
[0.627] STRCF
[0.612] ARCF
[0.596] MCCT
[0.575] SRDCF
[0.406] KCF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

ra
te

Success plots on UAV123@10FPS

[0.578] SiamRPN++(M2)
[0.575] Ours
[0.575] SiamFC++
[0.571] SiamAPN
[0.569] HiFT
[0.551] SiamRPN++(Alex)
[0.483] DASiamRPN
[0.477] AutoTrack
[0.468] ECO
[0.457] STRCF
[0.435] ARCF
[0.433] MCCT
[0.423] SRDCF
[0.265] KCF

0 5 10 15 20 25 30 35 40 45

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots on UAV20L

[0.764] Ours
[0.763] HiFT
[0.723] SiamRPN++(M2)
[0.701] SiamRPN++(Alex)
[0.692] SiamAPN
[0.665] SiamFC++
[0.631] DASiamRPN
[0.575] STRCF
[0.568] MCCT
[0.544] ARCF
[0.512] AutoTrack
[0.507] SRDCF
[0.498] ECO
[0.311] KCF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

ra
te

Success plots on UAV20L

[0.570] Ours
[0.566] HiFT
[0.547] SiamRPN++(M2)
[0.533] SiamRPN++(Alex)
[0.518] SiamAPN
[0.510] SiamFC++
[0.442] DASiamRPN
[0.410] STRCF
[0.381] ARCF
[0.378] MCCT
[0.377] ECO
[0.349] AutoTrack
[0.343] SRDCF
[0.196] KCF

Fig. 3: Overall performance of all trackers on (a) UAV123@10fps, (b)UAV20L. The overall results illustrate that
LightOcean(ours) achieves superior performance against other SOTA trackers.

TABLE II: Comparison results on the DTB70 benchmark. The top three performers are highlighted in red, green and blue
respectively. Prec. and Succ. respectively denote precision score at 20 pixels and AUC of success plot.

Tracker SiamRPN++
(AlexNet)

SiamRPN++
(MobileNetV2)

SiamAPN
(AlexNet)

SiamFC++
(AlexNet)

HiFT
(AlexNet) AutoTrack ECO STRCF ARCF MCCT SRDCF KCF LightOcean

(ours)
Prec. 0.793 0.785 0.784 0.785 0.802 0.716 0.635 0.649 0.694 0.604 0.512 0.468 0.795
Succ. 0.586 0.593 0.586 0.584 0.594 0.478 0.448 0.437 0.472 0.405 0.363 0.280 0.594

For more details on the prediction head regression and
classification branches and training objectives, we refer the
reader to [39]

E. Dynamic Template Updates

IV. EXPERIMENTS

In this section, we first introduce the training details of the
model and the setting of hyperparameters. Then, we propose
a novel evaluation metric set, LEMA, to comprehensively
evaluate the performance of the tracker on real UAV tracking
tasks. On the one hand, we compare the inference latency and
resource consumption of our tracker with other state-of-the-art
deep trackers on common edge devices. On the other hand, we
evaluate our tracker accuracy on three public UAV tracking
benchmarks, including UAV123[29], UAV123@10FPS[29],
VisDrone2019-SOT [40], and compare with other state-of-the-
art UAV trackers. Finally, comprehensive ablation experiments
analyze the impact of individual parts on the tracker.

A. Implementation details

Our proposed model is implemented using Python and
PyTorch. In order to obtain the best experimental results,
we selected three edge-friendly backbone networks, AlexNet,
ShuffleNetV2 and MobileNetV3 for training. All backbone
networks have a downsampling stride of 16 and are pretrained
on imageNet. For more training details, we first train the target
subnet with a warmup learning rate of 1×10−3 to 5×10−3, and
then use a learning rate of 5×10−3 to 10−5 for the rest of the
training. The weight decay and momentum are set to 10−4 and
0.9. We perform synchronous SGD on 4 NVIDIA A100-PCIe-
40GB with a total batchsize of 128 and a training duration of
6 days. The training process of the entire model is end-to-end.
The proposed model is trained for a total of 50 epochs, and
each epoch selects 4 ∗ 104 image pairs consisting of search
image and target image from COCO [25], LaSOT [11] and
GOT-10K [17]. The size of the search image is set to 255×255,

TABLE III: Attribute-based evaluation of the LightOcean
and other14 SOTA tracker on two benckmarks. The best two
performances are respectively highlighted by red and green
color. LightOcean keeps achieving the best performance in

different attributes.

Attributes Out of View Similar Object Scale Variation Full Occlusion
Tracker Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

SiamRPN++ A 0.642 0.474 0.730 0.523 0.703 0.522 0.521 0.313
SiamRPN++ M 0.720 0.527 0.731 0.539 0.742 0.553 0.574 0.363

SiamAPN 0.688 0.504 0.699 0.512 0.732 0.548 0.530 0.320
SiamFC++ 0.677 0.522 0.727 0.544 0.718 0.553 0.521 0.335

HiFT 0.685 0.514 0.673 0.490 0.725 0.549 0.525 0.323
AutoTrack 0.554 0.406 0.664 0.462 0.629 0.443 0.444 0.243

ECO 0.535 0.399 0.655 0.478 0.594 0.430 0.465 0.256
STRCF 0.523 0.389 0.630 0.455 0.580 0.419 0.426 0.232
ARCF 0.449 0.330 0.657 0.445 0.570 0.399 0.392 0.200
MCCT 0.493 .0365 0.627 0.451 0.547 0.396 0.421 0.236
SRDCF 0.492 0.389 0.585 0.421 0.531 0.390 0.418 0.229

KCF 0.309 0.222 0.453 0.278 0.374 0.238 0.281 0.135
LightOcean(Ours) 0.750 0.543 0.767 0.542 0.769 0.558 0.627 0.377

and the size of the template image is set to 127 × 127, both
of which are larger than the object area.

B. Comparison on UAV benchmarks

In this section, We compare our proposed tracker with ex-
isting 13 lightweight trackers on 3 common UAV benchmarks
(VisDrone2019-SOT [40], UAV123 [29], DTB70 [29]). There
are 6 Siamese-base trackers (SiamFC++ [36], SiamFC [1],
SiamRPN++ [23], HiFT [3]), and 5 DCF-base trackers
(ECO[10], KCF [14], ARCF [18], AutoTrack[24], BACF[20]).
To be fair, all Siamese-based trackers use lightweight back-
bone networks such as AlexNet and Mobilenet.

UAV123@10FPS UAV123@10fps [29] adopts a sampling
rate of 10FPS. Compared with UAV123, the interval between
frames becomes larger, which causes the scene to change faster
and is more challenging for tracking tasks.

UAV20L The UAV20L consists of 20 long-term tracking
sequences with an average of 2934 frames and a total of over

(b) UAV20L

Fig. 4: Overall performance of all trackers on (a) UAV123@10FPS, (b) UAV20L.

TABLE I: Comparison results on the DTB70 benchmark. The best performances are highlighted in red, green and blue.

Tracker SiamRPN++
(AlexNet)

SiamRPN++
(MobileNetV2)

SiamAPN
(AlexNet)

SiamFC++
(AlexNet)

HiFT
(AlexNet) AutoTrack ECO STRCF ARCF MCCT SRDCF KCF LightOcean

(ours)
Prec. 0.793 0.785 0.784 0.785 0.802 0.716 0.635 0.649 0.694 0.604 0.512 0.468 0.795
Succ. 0.586 0.593 0.586 0.584 0.594 0.478 0.448 0.437 0.472 0.405 0.363 0.280 0.594

TABLE II: Comparison with deep trackers. The best performances are highlighted in red, green and blue.

Tracker TransT
(Res50)

ATOM
(Res18)

PrDIMP
(Res18)

Ocean
(Res50)

SiamFC++
(GoogleNet)

SiamGAT
(GoogleNet)

SiamMask
(Res50)

SiamRPN++
(Res50)

SiamBAN
(Res50)

SiamCAR
(Res50)

LightOcean
(ours)

Pre. 0.848 0.857 0.837 0.759 0.759 0.788 0.788 0.784 0.770 0.789 0.785
Suc. 0.651 0.648 0.644 0.539 0.589 0.602 0.590 0.594 0.585 0.596 0.575

B. Comparison with Light-Weight Trackers

In this section, We compare our proposed tracker with
existing 12 lightweight trackers on 3 common UAV bench-
marks (UAV123@10FPS [30], UAV20L [30], DTB70[30]).
There are 6 Siamese-base trackers (SiamFC++ [36],
SiamFC [1], SiamRPN++ [23], HiFT [3]), and 5 DCF-
base trackers (ECO[11], KCF [15], ARCF [18], Auto-
Track[25], BACF[20]). To be fair, all Siamese-based trackers
use lightweight backbone networks such as AlexNet and
MobileNet.

UAV123@10FPS. UAV123@10FPS [30] contains 123
low-altitude drone sequences, with a total frame count
of more than 112k, shooting many scenes and targets
from various angles in the air. Since the sampling rate of
UAV123@10FPS is 10fps, the interval between frames be-
comes more extensive, and the motion of the target changes
more drastically, which poses a considerable challenge to
the robustness of the tracker. The results in Figure 4(a) show
that LightOcean achieves competitive performance with
a precision score and an success score of 0.786 and 0.578,
respectively, which are higher than most current trackers.

UAV20L. UAV20L consists of 20 long-term tracking
sequences with more than 58K frames, which are used to
evaluate long-term tracking scenarios common in real-world
aerial tracking. As shown in Figure 4(b), attributing to the
introduction of dynamic template features, LightOcean
can adapt to changes in the appearance of targets in long-
distance tracking, thereby achieving more excellent track-
ing performance. Specifically, LightOcean achieves a
precision score of 0.764 and an success score of 0.570,

outperforming the recent SOTA aerial tracker HiFT and
improving the score by 5.6% over SiamRPN++.

DTB70. DTB70 is also a widely used UAV tracking
dataset, consisting of 70 video sequences from aerial view-
points with high diversity, containing a large number of
camera-moving scenes with rapidly changing motions. As
shown in Table I, the success score of our tracker is 0.594,
which is comparable to the state-of-the-art HiFT tracker
and outperforms SiamRPN++ and SiamFC++. In summary,
LightOcean is able to achieve better robust results in
various UAV tracking scenarios compared to other state-of-
the-art tracking, confirming the effectiveness of our proposed
method.

TABLE III: Attribute-based evaluation of the
LightOcean and other 12 SOTA tracker.The best
performances are highlighted in red, green and blue

respectively.

Attributes Out of View Similar Object Scale Variation Full Occlusion
Tracker Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

SiamRPN++ A 0.642 0.474 0.730 0.523 0.703 0.522 0.521 0.313
SiamRPN++ M 0.720 0.527 0.731 0.539 0.742 0.553 0.574 0.363

SiamAPN 0.688 0.504 0.699 0.512 0.732 0.548 0.530 0.320
SiamFC++ 0.677 0.522 0.727 0.544 0.718 0.553 0.521 0.335

HiFT 0.685 0.514 0.673 0.490 0.725 0.549 0.525 0.323
AutoTrack 0.554 0.406 0.664 0.462 0.629 0.443 0.444 0.243

ECO 0.535 0.399 0.655 0.478 0.594 0.430 0.465 0.256
STRCF 0.523 0.389 0.630 0.455 0.580 0.419 0.426 0.232
ARCF 0.449 0.330 0.657 0.445 0.570 0.399 0.392 0.200
MCCT 0.493 .0365 0.627 0.451 0.547 0.396 0.421 0.236
SRDCF 0.492 0.389 0.585 0.421 0.531 0.390 0.418 0.229

KCF 0.309 0.222 0.453 0.278 0.374 0.238 0.281 0.135
LightOcean 0.750 0.543 0.767 0.542 0.769 0.558 0.627 0.377

Attribute-based performance. To further evaluate the
performance of LightOcean in different tracking scenar-

ios, this paper selects four attribute-based tracking scenarios
for testing, which are widely used in actual UAV tracking. As
shown in Table III, LightOcean ranks first in both success
and accuracy rates compared to the other 12 state-of-the-art
trackers. Specifically, since our tracker applies an additional
dynamic template feature, the latest state information of the
object can be dynamically obtained during the tracking pro-
cess. Therefore, our tracker can effectively adapt to complex
environmental changes and achieve more robust results in
scale and care-changing scenes. At the same time, benefiting
from the pixel-level feature fusion network, LightOcean
can more effectively distinguish and fuse the background
information before and after. Therefore, the performance of
LightOcean in occlusion and out-of-view scenarios is also
significantly improved.

C. Comparison with Deep Trackers

To further verify the robustness of our proposed tracker,
we compare it with trackers applying deeper backbone
networks. The deep trackers involved in the compari-
son include, SiamRPN++ [23], TransT [4], PrDIMP [7],
ATOM [8], Ocean [38], SiamFC++ [36], SiamGAT [13],
SiamMask [33], SiamBAN [5], SiamCAR [14]. The results
are shown in Table II. Although our proposed tracker uses
the lightweight network ShuffleNet as the feature extraction
network, it still achieves competitive performance compared
with trackers using hierarchical backbone networks. On
UAV123@10FPS, LightOcean differs from SiamGAT
by less than one point in accuracy, which is better than
the original algorithm Ocean. Therefore, the above results
further verify the effectiveness of the method proposed in
this paper.

D. Comparison on edge platforms

To further verify the effectiveness of our proposed tracker
on real edge applications, we compare the model’s inference
latency, power consumption, and memory footprint with
other SOTA deep Siamese trackers on a typical embedded
edge device, Jetson Nano. Jetson Nano is an embedded CPU-
GPU heterogeneous device produced by NVIDIA, which
is widely used in various edge applications due to its low
cost and high-cost performance. To avoid other hardware
and software factors affecting the evaluation results, all
environments of the edge platform are consistent and only
perform tracking tasks. Evaluation environment on Jetson
Nano: Ubuntu 18.04, JetPack 4.4.1, CUDA 10.2, Pytorch
1.6.0. The overall comparison results are shown in Figure 5.

Latency. The latency of the model is calculated by
dividing the total latency of inferring a video sequence by the
total number of frames in the video, regardless of the time
the model takes to load and warm up. As shown in Figure 5,
LightOcean has lower latency than other SOTA trackers
and can run in real-time at a speed of 10.8FPS on Nano. It
is nearly 6X faster than TransT with the best performance,
5X faster than the original algorithm Ocean, and more than

1400 1600 1800 2000 2200 2400
Memory usage(MB)

2320

1820

1700

1680

1679

1543

Memory usage comparison results

0 1 2 3 4 5
Energy consumption(Wh)

3.81

2.82

2.52

1.29

1.11

0.65

Energy consumption comparison results

0 2 4 6 8 10 12
Latency(FPS)

10.8

6.45

6.24

4.71

2.66

2.04

Latency comparison results
LightOcean(ours)
HIFT_Alex
SiamFC++_GoogleNet
SiamRPN++_M2
Ocean_R50
TransT_R50

Fig. 5: Memory usage, energy consumption and latency
comparison results on Jetson Nano

twice that of SiamRPN++ (MobileNetV2), which is also a
lightweight network.

Energy consumption. The energy consumption of the
model is measured by an external watt-hour meter on the
edge device. Similarly, we do not consider the cost of model
loading and warm-up. It can be observed that LightOcean
is energy efficient, and it only consumes 0.65Wh of power to
infer a video sequence of 3000 frames of pictures on Jetson
Nano. Compared with other trackers, the average energy
consumption of LightOcean is one-sixth of TransT, one-
fifth of Ocean, and half of SiamRPN++. Being more energy
efficient makes LightOcean trackers more competitive on
UAV platforms with limited battery capacity.

Memory usage. The memory usage represents the max-
imum memory occupied by the tracker during the running
process, which we measure by the jtop tools. The results
show that LightOcean has a maximum memory usage of
1.6GB during model inference, which is 30% less memory
than TransT and 10% less memory than Ocean. Although
LightOcean needs to save additional dynamic template
features in the inference process, its memory usage is still
lower than that of lightweight network, which shows that our
proposed method is more memory-efficient. Compared with
other SOTA trackers, LightOcean is more edge-friendly,
providing lower inference latency, energy consumption, and
memory usage, verifying its effectiveness on real edge
devices.

E. Ablation study

In this section, we verify the effectiveness of our pro-
posed method in terms of the backbone network, cross-
correlation operation, and dynamic template update. We
evaluate UAV123@10FPS on a typical jetson nano to ex-
plore the impact of different components on tracking perfor-
mance and efficiency. As shown in the Table IV, the baseline
model has the same network architecture as Ocean. We
first analyze the performance impact of different lightweight

backbone networks on the tracker. We noticed that the infer-
ence speed of using ShuffleNetV2 as the backbone network
is 10.1 FPS, which is four times faster than baseline, 10%
faster than MobileNetV2, and 50% faster than AlexNet. At
the same time, ShuffleNetV2 is comparable to MobileNetV2
in terms of accuracy, better than Alexnet, and saves more
memory and energy. By replacing the depth cross-correlation
module with a pixel-level feature fusion module, the interfer-
ence of background information is reduced, and the accuracy
is improved by 5%. At the same time, since the classification
branch and regression branch share the parameters of the
same feature fusion module, the tracker’s inference delay
and resource consumption are further reduced. In addition,
by introducing a credible, dynamic template feature, the
expressiveness of the template feature is finally improved,
and 3.1% increases the accuracy with almost no increase in
model computation.

TABLE IV: Ablation study on UAV123@10FPS.

Pre. #Latency(FPS) #Mem(MB) #Power(Wh)
BaseLine 0.759 2.6 1820 2.82
AlexNet 0.658 6.5 1480 0.87

MobileNetV2 0.708 8.8 1617 0.94
ShuffleNetV2 0.726 10.1 1463 0.72

PixCorr 0.762 11.1 1423 0.63
OnlineUpdate 0.786 10.8 1531 0.65

V. CONCLUSION

This paper proposes a novel lightweight tracker,
LightOcean, based on the Siamese network structure for
airborne real-time tracking. This paper designs a dynamic
template update module and a pixel-level cross-correlation
module to improve tracking performance without compro-
mising tracking efficiency. Combined with a lightweight and
efficient feature extraction network and prediction head, the
proposed LightOcean achieves a balance of tracking ac-
curacy and efficiency. This paper evaluated the performance
on a typical embedded edge platform, Jetson-nano, with
three typical UAV benchmarks, UAV123@10FPS, UAV20L,
and DTB70. LightOcean presents lower energy con-
sumption and memory footprint than other trackers. The
tracking speed is 4x faster than the state-of-the-art tracker,
Ocean, while the energy consumption and memory usage
are reduced by 80% and 12%. Consequently, we believe that
our work can boost the development of UAV tracking-related
applications.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China under Grant
62162067 and 62101480, in part by the Yunnan Province
Science Foundation under Grant No.202005AC160007,
No.202001BB050076, Research and Application of Ob-
ject detection based on Artificial Intelligence, in part by
the China Postdoctoral Science Foundation under Grant

No.2021M693227, and in part of Zhejiang Lab under Grant
No.2020KE0AB02.

REFERENCES

[1] Luca Bertinetto et al. “Fully-convolutional siamese
networks for object tracking”. In: European confer-
ence on computer vision. Springer. 2016, pp. 850–
865.

[2] David S Bolme et al. “Visual object tracking using
adaptive correlation filters”. In: 2010 IEEE computer
society conference on computer vision and pattern
recognition. IEEE. 2010, pp. 2544–2550.

[3] Ziang Cao et al. “HiFT: Hierarchical Feature Trans-
former for Aerial Tracking”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 15457–15466.

[4] Xin Chen et al. “Transformer tracking”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 8126–8135.

[5] Zedu Chen et al. “Siamese box adaptive network for
visual tracking”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion. 2020, pp. 6668–6677.

[6] François Chollet. “Xception: Deep learning with
depthwise separable convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1251–1258.

[7] Martin Danelljan, Luc Van Gool, and Radu Timofte.
“Probabilistic regression for visual tracking”. In: Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 7183–7192.

[8] Martin Danelljan et al. “Atom: Accurate tracking
by overlap maximization”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2019, pp. 4660–4669.

[9] Martin Danelljan et al. “Convolutional features for
correlation filter based visual tracking”. In: Proceed-
ings of the IEEE international conference on com-
puter vision workshops. 2015, pp. 58–66.

[10] Martin Danelljan et al. “Discriminative scale space
tracking”. In: IEEE transactions on pattern analysis
and machine intelligence 39.8 (2016), pp. 1561–1575.

[11] Martin Danelljan et al. “Eco: Efficient convolution
operators for tracking”. In: Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. 2017, pp. 6638–6646.

[12] Heng Fan et al. “Lasot: A high-quality benchmark
for large-scale single object tracking”. In: Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 5374–5383.

[13] Dongyan Guo et al. “Graph attention tracking”. In:
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition. 2021, pp. 9543–
9552.

[14] Dongyan Guo et al. “SiamCAR: Siamese fully convo-
lutional classification and regression for visual track-
ing”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020,
pp. 6269–6277.

[15] João F Henriques et al. “High-speed tracking with
kernelized correlation filters”. In: IEEE transactions
on pattern analysis and machine intelligence 37.3
(2014), pp. 583–596.

[16] Andrew G Howard et al. “Mobilenets: Efficient con-
volutional neural networks for mobile vision applica-
tions”. In: arXiv preprint arXiv:1704.04861 (2017).

[17] Lianghua Huang, Xin Zhao, and Kaiqi Huang. “Got-
10k: A large high-diversity benchmark for generic
object tracking in the wild”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 43.5
(2019), pp. 1562–1577.

[18] Ziyuan Huang et al. “Learning aberrance repressed
correlation filters for real-time UAV tracking”. In:
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2019, pp. 2891–2900.

[19] Forrest N Iandola et al. “SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and¡ 0.5 MB
model size”. In: arXiv preprint arXiv:1602.07360
(2016).

[20] Hamed Kiani Galoogahi, Ashton Fagg, and Simon
Lucey. “Learning background-aware correlation filters
for visual tracking”. In: Proceedings of the IEEE
international conference on computer vision. 2017,
pp. 1135–1143.

[21] Yann LeCun et al. “Backpropagation applied to hand-
written zip code recognition”. In: Neural computation
1.4 (1989), pp. 541–551.

[22] Bo Li et al. “High performance visual tracking with
siamese region proposal network”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2018, pp. 8971–8980.

[23] Bo Li et al. “Siamrpn++: Evolution of siamese visual
tracking with very deep networks”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 4282–4291.

[24] Siyi Li and Dit-Yan Yeung. “Visual object tracking
for unmanned aerial vehicles: A benchmark and new
motion models”. In: Thirty-first AAAI conference on
artificial intelligence. 2017.

[25] Yiming Li et al. “AutoTrack: Towards high-
performance visual tracking for UAV with automatic
spatio-temporal regularization”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 11923–11932.

[26] Tsung-Yi Lin et al. “Microsoft coco: Common objects
in context”. In: European conference on computer
vision. Springer. 2014, pp. 740–755.

[27] Shaohua Liu et al. “Vehicle tracking by detection in
UAV aerial video”. In: Science China Information
Sciences 62.2 (2019), pp. 1–3.

[28] Ningning Ma et al. “Shufflenet v2: Practical guide-
lines for efficient cnn architecture design”. In: Pro-
ceedings of the European conference on computer
vision (ECCV). 2018, pp. 116–131.

[29] Ioannis Mademlis et al. “High-level multiple-UAV
cinematography tools for covering outdoor events”.
In: IEEE Transactions on Broadcasting 65.3 (2019),
pp. 627–635.

[30] Matthias Mueller, Neil Smith, and Bernard Ghanem.
“A benchmark and simulator for uav tracking”. In:
European conference on computer vision. Springer.
2016, pp. 445–461.

[31] Horst Possegger, Thomas Mauthner, and Horst
Bischof. “In defense of color-based model-free track-
ing”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2015, pp. 2113–
2120.

[32] Mark Sandler et al. “Mobilenetv2: Inverted residuals
and linear bottlenecks”. In: Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. 2018, pp. 4510–4520.

[33] Qiang Wang et al. “Fast online object tracking and
segmentation: A unifying approach”. In: Proceedings
of the IEEE/CVF conference on Computer Vision and
Pattern Recognition. 2019, pp. 1328–1338.

[34] Xiaolong Wang et al. “Non-local neural networks”.
In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 7794–7803.

[35] Sean Ward et al. “Autonomous UAVs wildlife detec-
tion using thermal imaging, predictive navigation and
computer vision”. In: 2016 IEEE aerospace confer-
ence. IEEE. 2016, pp. 1–8.

[36] Yinda Xu et al. “Siamfc++: Towards robust and accu-
rate visual tracking with target estimation guidelines”.
In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 07. 2020, pp. 12549–12556.

[37] Bin Yan et al. “Alpha-refine: Boosting tracking perfor-
mance by precise bounding box estimation”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 5289–5298.

[38] Zhipeng Zhang et al. “Ocean: Object-aware anchor-
free tracking”. In: European Conference on Computer
Vision. Springer. 2020, pp. 771–787.

[39] Pengfei Zhu et al. “Visdrone-vid2019: The vision
meets drone object detection in video challenge re-
sults”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops. 2019,
pp. 0–0.

	Introduction
	Related work
	Object Tracking
	Lightweight And Efficient Neural Network

	LightOcean: A Lightweight and Efficient UAV Tracker
	Feature extraction network
	Template update network
	Feature fusion network
	Prediction head network

	Experiments
	Implementation details
	Comparison with Light-Weight Trackers
	Comparison with Deep Trackers
	Comparison on edge platforms
	Ablation study

	Conclusion
	Acknowledgment

